Estimation and Prediction of the Vehicle's Motion Based on Visual Odometry and Kalman Filter

نویسندگان

  • Basam Musleh
  • David Martín
  • Arturo de la Escalera
  • Domingo Miguel Guinea
  • María C. García-Alegre
چکیده

The movement of the vehicle is an useful information for different applications, such as driver assistant systems or autonomous vehicles. This information can be known by different methods, for instance, by using a GPS or by means of the visual odometry. However, there are some situations where both methods do not work correctly. For example, there are areas in urban environments where the signal of the GPS is not available, as tunnels or streets with high buildings. On the other hand, the algorithms of computer vision are affected by outdoor environments, and the main source of difficulties is the variation in the ligthing conditions. A method to estimate and predict the movement of the vehicle based on visual odometry and Kalman filter is explained in this paper. The Kalman filter allows both filtering and prediction of vehicle motion, using the results from the visual odometry estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1-Point RANSAC for EKF Filtering. Application to Real-Time Structure from Motion and Visual Odometry

Random Sample Consensus (RANSAC) has become one of the most successful techniques for robust estimation from a data set that may contain outliers. It works by constructing model hypotheses from random minimal data subsets and evaluating their validity from the support of the whole data. In this paper we present a novel combination of RANSAC plus Extended Kalman Filter (EKF) that uses the availa...

متن کامل

6D Visual Odometry with Dense Probabilistic Egomotion Estimation

We present a novel approach to 6D visual odometry for vehicles with calibrated stereo cameras. A dense probabilistic egomotion (5D) method is combined with robust stereo feature based approaches and Extended Kalman Filtering (EKF) techniques to provide high quality estimates of vehicle’s angular and linear velocities. Experimental results show that the proposed method compares favorably with st...

متن کامل

Visual-LiDAR Odometry Aided by Reduced IMU

Abstract: This paper proposes a method for combining stereo visual odometry, Light Detection And Ranging (LiDAR) odometry and reduced Inertial Measurement Unit (IMU) including two horizontal accelerometers and one vertical gyro. The proposed method starts with stereo visual odometry to estimate six Degree of Freedom (DoF) ego motion to register the point clouds from previous epoch to the curren...

متن کامل

A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors

State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situat...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012